Applications leveraging the power of Artificial Intelligence (AI) are transforming the healthcare industry to enhance patient care, streamline processes, and advance medical research. While it holds significant potential, the technology requires massive amounts of patient data, raising concerns about privacy, security, and other ethical issues.
HITRUST helps ensure the ethical use of AI in healthcare through its AI Assurance Program. The HITRUST AI Assurance program provides a comprehensive framework for AI risk management that promotes transparency, accountability, and collaboration while protecting patient privacy and fostering responsible AI adoption.
AI is transforming the future of healthcare from discovery to diagnosis to delivery. However, AI ethics is a complex and multidimensional issue with considerations that include
AI has the potential to reshape healthcare operations, making them safer and more reliable. However, AI can be prone to errors, and determining liability can be complex due to multiple parties involved in creating these applications.
AI systems rely on vast amounts of data, raising concerns about how patient information is collected, stored, and used.
Healthcare providers should inform patients about the use of AI in their care. Patients should additionally have the right to consent or opt out if they are uncomfortable with AI involvement in their diagnosis or treatment.
Determining who owns and controls healthcare data used by AI systems can be an ethical issue with competing interests among healthcare providers, application developers, and data aggregators.
Data used to train AI algorithms may result in biased healthcare decisions. This can lead to ethical dilemmas where AI systems possibly perpetuate or exacerbate disparities in healthcare outcomes among different demographic groups.
Healthcare professionals and patients need to understand how AI systems make decisions. Promoting transparency in AI algorithms and ensuring that developers and providers are accountable for their decisions is essential to building trust in AI systems.
Patient health data is collected, stored, and used through a combination of manual and digital processes.
Healthcare organizations and providers are legally and ethically responsible for protecting patient data and ensuring it is used for authorized and legitimate purposes. Unauthorized access or improper handling of patient data can result in legal consequences, including fines and penalties.
Third-party vendors play significant roles in AI-based healthcare solutions by providing specialized technology, expertise, and services that complement and enhance the capabilities of healthcare organizations.
The involvement of third-party vendors can help healthcare providers, institutions, and researchers leverage AI effectively to improve patient care and streamline healthcare processes in the following ways.
Third-party vendors develop AI algorithms, applications, and software tailored for healthcare use cases. They often specialize in areas like medical imaging analysis, natural language processing, predictive analytics, neural networks, and disease diagnosis.
Solutions developed by third-party vendors are typically integrated into existing healthcare systems, such as EHRs, diagnostic tools, and telemedicine platforms.
Third-party vendors provide data collection, aggregation, and normalization tools that can be integrated into wearables, medical devices, and patient records. These tools help healthcare organizations gather and structure diverse data sources for use in AI analysis.
Third-party vendors typically ensure that their AI solutions comply with healthcare data security regulations, such as the Health Insurance Portability and Accountability Act of 1996 (HIPAA) in the United States or the General Data Protection Regulation (GDPR) in the European Union. Compliance with these regulations requires that vendors implement strong security measures to secure data systems when handling patient data during collection, transmission, and storage.
Vendors typically offer continuous monitoring and maintenance services to ensure the reliability and accuracy of AI systems. Regular updates and improvements to algorithms and models are essential to keep the solutions effective and up-to-date.
Third-party vendors often collaborate with healthcare entities and academic institutions to conduct research studies and clinical trials. Collaboration with these organizations typically involves providing AI tools, data, and expertise to help advance research efforts.
There are numerous pros and cons of using AI in healthcare . Similarly, the involvement of third-party vendors can positively and negatively impact patient data privacy.
Positive impacts include
Negative impacts include
Ensuring patient privacy and security when utilizing AI in healthcare settings is critical to leveraging the full potential of the technology while minimizing risks.
Some key ways to enhance patient privacy and security in AI applications in healthcare include
Adopting a proactive, multi-layered approach to minimizing the security risks of using AI in healthcare is critical to maintaining patient privacy. Protecting patient data is a legal requirement and a fundamental ethical principle to build and maintain trust in the healthcare system.
The White House released the Blueprint for an AI Bill of Rights in October 2022, emphasizing rights-centered principles for addressing AI-related risks. Concurrently, the US Department of Commerce's National Institute of Standards and Technology (NIST) introduced the Artificial Intelligence Risk Management Framework 1.0 (AI RMF) to guide responsible AI development with some insights applicable to healthcare.
The HIPAA mandates data protection in the United States. Malicious actors using AI may expose covered entities and related associates to potential liability under the HIPAA. Applications of AI used by threat actors include the development of malware and deceptive phishing email templates designed to deceive recipients into opening dangerous attachments or clicking malicious links.
HITRUST recently launched the AI Assurance Program, designed to enhance data security in AI applications used by the healthcare industry. The program incorporates AI risk management into the HITRUST CSF (Common Security Framework), integrating sources such as the NIST AI Risk Management Framework and ISO AI Risk Management Guidelines.
The HITRUST AI Assurance program helps organizations stay current with evolving AI technology and associated risks while fostering responsible AI adoption and promoting industry-wide transparency and collaboration.
Click here to learn more about the HITRUST Strategy for Providing Reliable AI Security Assurances.